A structure theorem for quasi-Hopf comodule algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic Homology of Hopf Comodule Algebras and Hopf Module Coalgebras

In this paper we construct a cylindrical module A♮H for an Hcomodule algebra A, where the antipode of the Hopf algebra H is bijective. We show that the cyclic module associated to the diagonal of A♮H is isomorphic with the cyclic module of the crossed product algebra A ⋊H. This enables us to derive a spectral sequence for the cyclic homology of the crossed product algebra. We also construct a c...

متن کامل

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

A Structure Theorem for Quasi-hopf Bimodule Coalgebras

Let H be a quasi-Hopf algebra. We show that any H-bimodule coalgebra C for which there exists an H-bimodule coalgebra morphism ν : C → H is isomorphic to what we will call a smash product coalgebra. To this end, we use an explicit monoidal equivalence between the category of two-sided two-cosided Hopf modules over H and the category of left Yetter-Drinfeld modules over H. This categorical metho...

متن کامل

Burnside's Theorem for Hopf Algebras

A classical theorem of Burnside asserts that if X is a faithful complex character for the finite group G, then every irreducible character of G is a constituent of some power Xn of X . Fifty years after this appeared, Steinberg generalized it to a result on semigroup algebras K[G] with K an arbitrary field and with G a semigroup, finite or infinite. Five years later, Rieffel showed that the the...

متن کامل

A Frobenius-Schur theorem for Hopf algebras

In this note we prove a generalization of the Frobenius-Schur theorem for finite groups for the case of semisimple Hopf algebra over an algebraically closed field of characteristic 0. A similar result holds in characteristic p > 2 if the Hopf algebra is also cosemisimple. In fact we show a more general version for any finite-dimensional semisimple algebra with an involution; this more general r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-07-08712-6